สรุปข้อมูลใน Cofact.org 01 พ.ค. 63

สรุปข้อมูลใน Cofact.org 30 เม.ย. 63

สรุปข้อมูลใน Cofact.org 30 เม.ย. 63

สรุปข้อมูลใน Cofact.org 30 เม.ย. 63

สรุปข้อมูลใน Cofact.org 29 เม.ย. 63

สรุปข้อมูลใน Cofact.org 29 เม.ย. 63

สรุปข้อมูลใน Cofact.org 29 เม.ย. 63

สรุปข้อมูลใน Cofact.org 29 เม.ย. 63

สรุปข้อมูลใน Cofact.org 28 เม.ย. 63

สรุปข้อมูลใน Cofact.org 28 เม.ย. 63

สรุปข้อมูลใน Cofact.org 28 เม.ย. 63

เราจะหยุดยั้งการระบาดของข่าวลวงด้วย Super-corrector ได้อย่างไร

ผลการวิเคราะห์ข่าวลวงเรื่อง Covid-19 ชี้ให้เห็นว่าข่าวลวงจะแพร่กระจายน้อยลงเมื่อมีองค์กรสื่อและโซเชียลมีเดียที่มีผู้ติดตามมากเป็นผู้แก้ข่าวนั้นพร้อมๆกันทันทีหลังพบ Super-spreader

ชิตพงษ์ กิตตินราดร และทีมวิจัย
สถาบันเชนจ์ฟิวชั่น (ChangeFusion)
เมษายน 2563

ปัญหาการแพร่กระจายของข้อมูลเท็จ หรือที่เรียกว่าข่าวลวง เป็นปัญหาที่มีความรุนแรงมากขึ้นเรื่อยๆ และส่งผลต่อชีวิตและสังคมอย่างจับต้องได้ ตัวอย่างเช่นในช่วงเวลาปัจจุบันที่โรค COVID-19 กำลังแพร่ระบาดไปทั่วโลก ข่าวลวงและข้อมูลเท็จเกี่ยวกับการตรวจหาโรค การป้องกันตัว และการรักษา ล้วนส่งผลกระทบต่อชีวิตของคน เพราะถ้าผู้รับข่าวนำเนื้อหาในข่าวลวงไปปฏิบัติ ก็จะทำให้เกิดความเสี่ยงที่จะเกิดปัญหาทั้งต่อตนเอง ชุมชน และสังคมได้

การแก้ปัญหาข่าวลวง จึงเป็นวาระที่สำคัญของสังคม องค์กรสื่อ ภาคประชาชน และรัฐบาล ต่างเริ่มตื่นตัวจริงจังในการแก้ปัญหา โดยเกิดศูนย์ข่าวที่มีภารกิจในการแก้ไขข่าวลวงโดยเฉพาะ ควบคู่ไปกับการดำเนินการคล้ายคลึงกันของเพจที่ได้รับความนิยมบนเครือข่ายสังคม อย่างไรก็ตาม ในสังคมไทยแทบจะยังไม่มีการศึกษาเกี่ยวกับธรรมชาติของข่าวลวงว่ามีคุณลักษณะด้านต่างๆ อย่างไร และวิธีการไหนจะสามารถหยุดหรือป้องกันการแพร่กระจายของข่าวลวงได้ดีที่สุด การขาดความรู้นี้ทำให้การดำเนินการต่างๆ เกี่ยวกับข่าวลวงขาดความมั่นใจและสิ่งยืนยันว่าดำเนินการอย่างตรงจุดและได้ผล

เมื่อต้นปี 2563 ในช่วงที่ COVID-19 เริ่มระบาด ผู้เขียนได้มีโอกาสร่วมพัฒนาโครงการ Cofact ประเทศไทย ซึ่งมีเป้าหมายในการสร้างกลไกการตรวจสอบข่าวลวง ผ่านเว็บไซต์ cofact.org ควบคู่ไปกับการสร้างเครือข่ายออนไลน์ของอาสาสมัครที่ทำงานตรวจสอบข่าวลวง หนึ่งในปัจจัยสำคัญที่จะทำให้ Cofact บรรลุถึงเป้าหมายนี้ได้ คือการพยายามตอบคำถามว่า “ข่าวลวงเป็นอย่างไร มีพฤติกรรมอย่างไร และจะหยุดยั้งการระบาดได้อย่างไร” ผู้เขียนจึงได้พัฒนากระบวนวิธีที่จะทำให้ได้มาซึ่งคำตอบดังกล่าว

กระบวนการ เริ่มด้วยใช้ข้อมูลจากโซเชียลมีเดีย เช่น Facebook, Twitter, Instagram, Youtube, บล็อก และเว็บข่าวต่างๆ ซึ่งรวบรวมโดยบริการ Zocial Eye ของบริษัท Wisesight โดยข้อมูลแต่ละรายการ ประกอบด้วยวัน เวลา, ข้อความ, แพลตฟอร์ม, URL, Engagement เป็นต้น

จากนั้น นำข้อมูลโซเชียลมีเดียที่มีคำหรือกลุ่มคำตามหัวข้อที่สนใจ มาพล็อตดูรูปแบบการกระจายตัวหรือการกระจุกตัวของข้อความ โดยรูปแบบนี้จะพิจารณาเทียบกับเวลาที่นับตั้งแต่ข้อความแรกปรากฏ ร่วมกับจำนวนปฏิสัมพันธ์ (Engagement) ของแต่ละข้อความ เช่นตัวอย่างหัวข้อ “COVID-19 เป็นอาวุธชีวภาพ” พบว่ามีข้อความที่เกี่ยวข้อง กระจุกตัวเป็นสองกลุ่ม นั่นคือกลุ่มแรก รวมศูนย์อยู่ที่ประมาณวันที่ 10 หลังจากที่พบข้อความแรก และกลุ่มที่สอง รวมศูนย์อยู่ที่ประมาณวันที่ 30 หลังจากที่พบข้อความแรก

เพื่อทำให้การวิเคราะห์เกิดประโยชน์ จึงจำแนกข้อความข่าวแต่ละข้อความเป็นสี่ประเภท ได้แก่

  1. Super-spreader คือข้อความที่เผยแพร่ข้อมูลที่ผิด ที่มี Engagement มากกว่า 30 ครั้ง หรือเผยแพร่โดยสำนักข่าวหรือเว็บไซต์ที่มีชื่อเสียง
  2. Spreader คือข้อความที่เผยแพร่ข้อมูลที่ผิด ที่เผยแพร่โดยบัญชีเครือข่ายสังคมหรือกระทู้บนเว็บบอร์ดโดยคนทั่วไป
  3. Super-corrector คือข้อความที่แก้ไขข้อมูลที่ผิด ที่มี Engagement มากกว่า 30 ครั้ง หรือเผยแพร่โดยสำนักข่าวหรือเว็บไซต์ที่มีชื่อเสียง
  4. Corrector คือข้อความที่แก้ไขข้อมูลที่ผิด ที่เผยแพร่โดยบัญชีเครือข่ายสังคมหรือกระทู้บนเว็บบอร์ดโดยคนทั่วไป

ทั้งนี้ การจำแนกประเภทของข้อความจะดำเนินการโดยการอ่านและวิเคราะห์เนื้อหาข่าวลวงทีละเรื่อง

เมื่อแบ่งประเภทข้อความตามเกณฑ์ข้างต้น พบว่าจาก 194 ข้อความที่พบ เป็น Super-spreader 11 ข้อความ (5.67%), Spreader 119 ข้อความ (61.34%), Super-corrector 42 ข้อความ (21.64%), และ Corrector 22 ข้อความ (11.34%)

เห็นได้ว่า ในบรรดากลุ่มข้อความที่แพร่ข่าวลวง Spreader ทั่วไปมีจำนวนมากกว่า Super-spreader มาก ในขณะที่สัดส่วนของกลุ่มผู้แก้ข่าวนั้นเป็นทางตรงกันข้าม นั่นคือ Corrector มีจำนวนน้อยกว่า Super-corrector นั่นหมายถึงว่าคนทั่วไปมีแนวโน้มที่จะกระจายข่าวลวงที่ได้รับมา แต่ไม่ค่อยจะเป็นผู้แก้ข่าวเมื่อได้รับข้อมูลใหม่ที่เป็นความจริง

ต่อมา เมื่อพิจารณาดูสัดส่วนของแพลตฟอร์มที่พบข่าวลวงและการแก้ข่าวลวง พบว่า Facebook และ Twitter เป็นแพลตฟอร์มยอดนิยมของทุกกลุ่ม อย่างไรก็ตาม พบว่า Super-corrector มีสัดส่วนที่จะอยู่บนเว็บข่าวสูง ซึ่งชี้ให้เห็นว่า องค์กรสื่อมีบทบาทสูงในการเป็นผู้แก้ข่าวลวง

* “news” คือเว็บไซต์ข่าว ส่วน “forum” คือเว็บบอร์ด เช่น pantip.com

ขั้นตอนต่อมา คือการพิจารณาปฏิสัมพันธ์ระหว่างข้อความที่อยู่ในบทบาทต่างๆ โดยดูรูปแบบการปรากฏและความสัมพันธ์ของข้อความในบทบาทต่างๆ ภายในกลุ่มกระจุกตัว (Cluster) เดียวกัน พบข้อสังเกตที่น่าสนใจ คือการระบาดของข่าวลวงในกลุ่มกระจุกตัวหนึ่งๆ มีแนวโน้มที่จะยุติลง (จำนวน Spreader ลดลงจนแทบจะหายไป) หากกลุ่มกระจุกตัวนั้นมี Super-corrector จำนวนมากแก้ข่าวในเวลาไล่เลี่ยกันหลังจากที่พบข้อความประเภท Super-spreader ในทางกลับกัน หากกลุ่มกระจุกตัวนั้นขาด Super-corrector ข่าวลวงก็จะระบาดต่อไปโดย Spreader ที่มีจำนวนไม่ลดลง

ข่าวลวงเรื่อง COVID-19 เป็นอาวุธชีวภาพ พบการระบาดสอง Cluster โดย Cluster แรกมี Super-corrector จำนวนมากแก้ข่าวพร้อมๆ กันจึงหยุดระบาด ในขณะที่ Cluster ที่สอง มี Super-corrector ในช่วงแรกๆ ก็จริง แต่มี Super-spreader ภายหลัง ทำให้การระบาดต่อเนื่องออกไปโดย Spreader
ข่าวลวงเรื่องการป้องกัน COVID-19 ด้วยการรักษาความชุ่มชื้นของลำคอ พบการระบาดสอง Cluster โดย Cluster แรกมี Super-corrector จำนวนมากแก้ข่าวพร้อมๆ กัน จึงหยุดระบาดอย่างชัดเจน ในขณะที่ Cluster ที่สองยังไม่พบผลการทำงานของ Super-corrector ณ วันที่วิเคราะห์ข้อมูล
ข่าวลวงเรื่องการกลั้นหายใจ 10 วินาทีเพื่อตรวจว่าติด COVID-19 หรือไม่ พบการระบาดสาม Cluster โดย Cluster แรกไม่พบ Super-spreader คาดว่ามาจาก LINE และมี Super-corrector จำนวนมากหยุดการแพร่ ต่อมา Cluster ที่สองพบ Super-spreader เล็กน้อย แต่ Super-corrector รีบแก้ไขร่วมกัน ทำให้หยุดระบาดไปอีกช่วง มาระบาดอีกครั้งใน Cluster ที่สามซึ่ง ณ วันที่เก็บข้อมูลพบ Super-corrector กำลังทำงานอยู่

นั่นหมายความว่า การทำงานร่วมกันอย่างเป็นระบบ (Coordinated effort) และทันท่วงที (Timely) ขององค์กรสื่อและสื่อโซเชียลมีเดียที่มีผู้ติดตามจำนวนมากในการแก้ข่าวลวง เป็นเงื่อนไขที่สำคัญในการหยุดยั้งการระบาดของข่าวลวง

สุดท้าย เราสามารถวิเคราะห์เนื้อหา (Text analysis) ของข้อความในการระบาดแต่ละระยะ โดยแบ่งการระบาดภายในกลุ่มกระจุกตัวแต่ละกลุ่มออกเป็นสองระยะ คือระยะเริ่มต้น กับระยะพัฒนา

จะพบว่าในระยะเริ่มต้น การระบาดมักจะเริ่มโดย Spreader ในลักษณะการพูดลอยๆ เป็นความคิด ข่าวลือ ในขณะที่การระบาดในระยะพัฒนา เนื้อหาจะดูมีความน่าเชื่อถือ เป็นวิชาการ หรืออ้างว่ามีที่มาที่เป็นความลับ เป็นต้น อย่างไรก็ตาม ข้อสังเกตนี้ไม่ได้เป็นจริงในทุกกรณี ขึ้นอยู่กับลักษณะเนื้อหาของข่าวนั้นๆ

นอกจากเรื่อง COVID-19 เป็นอาวุธชีวภาพแล้ว ผู้เขียนได้ใช้วิธีการนี้วิเคราะห์ข่าวลวงเรื่องการตรวจ COVID-19 ด้วยการกลั้นหายใจ 10 วินาที, การป้องกัน COVID-19 ด้วยการรักษาความชุ่มชื้นของลำคอ, และการดื่มน้ำอุ่นเพื่อฆ่าเชื้อ COVID-19 รวมสี่เรื่อง ซึ่งได้ผลใกล้เคียงกับข้อสังเกตจากเรื่องแรกที่ได้อธิบายไป (ยกเว้นการวิเคราะห์เนื้อหาที่แตกต่างกันไปตามลักษณะเนื้อหาของแต่ละข่าว)

ดังนั้น อาจสรุปได้ว่า ผลการศึกษาจากตัวอย่างเรื่อง COVID-19 ทั้งสี่หัวข้อโดยใช้กระบวนวิธีนี้ ชี้ให้เห็นถึงบทบาทและความสำคัญของกลุ่ม Super-corrector ซึ่งเป็นผู้แก้ข่าวลวง ที่เป็นได้ทั้งองค์กรสื่อ ศูนย์ตรวจสอบข่าวลวง เพจหรือผู้ใช้โซเชียลมีเดียที่มีผู้ติดตามสูง ที่ต้องคอยติดตาม ตรวจสอบ และเผยแพร่เนื้อหาแก้ไขความเชื่อ ความเข้าใจที่ผิด โดยจะมีโอกาสสูงในการหยุดยั้งการระบาดได้เมื่อ Super-corrector ร่วมกันแก้ไขข่าวนั้นอย่างรวดเร็วและพร้อมเพรียงกันเมื่อพบการระบาด

ข้อจำกัดและโอกาสในการพัฒนาการวิเคราะห์ข่าวลวง

การศึกษาโดยใช้กระบวนวิธีนี้ในครั้งนี้ เป็นความพยายามแรกๆ ในประเทศไทย ในการศึกษาเรื่องการระบาดและการหยุดยั้งการระบาดของข่าวลวงอย่างเป็นระบบ ซึ่งยังมีข้อจำกัดที่สำคัญ เช่น:

  • กระบวนวิธี: เป็นการศึกษาความสัมพันธ์ระหว่างข้อมูลประเภทต่างๆ ที่สรุปผลจากระดับความสัมพันธ์ (Correlation) ไม่ใช่การยืนยันเหตุและผล (Causation) กล่าวคือเป็นการสรุปผลจากรูปแบบความสัมพันธ์ “ที่เห็น” ซึ่งไม่ได้หมายความว่าสิ่งที่เห็นต้องมีเหตุและผลเกี่ยวข้องกัน ดังนั้น การสรุปว่า “เมื่อมีสิ่งนี้ จึงพบสิ่งนี้” จึงไม่ได้หมายความว่า “เมื่อมีสิ่งนี้ จึงนำไปสู่สิ่งนี้” การยืนยันเหตุและผลของความสัมพันธ์ ไม่ใช่ขอบเขตของการศึกษานี้ ซึ่งสามารถทำได้ด้วยการทดลองอย่างเป็นวิทยาศาสตร์โดยการควบคุมตัวแปร หรือด้วยการเก็บข้อมูลที่ยืนยันความสัมพันธ์ระหว่างข้อความแต่ละประเภทได้ เช่นการยืนยันว่าข้อความของ Super-corrector “A” มาจากการที่ “A” เห็นข้อความนั้นจาก Super-spreader “B” ซึ่งเป็นข้อมูลที่เครื่องมือปัจจุบันไม่สามารถได้มาหรือยืนยันได้โดยง่าย
  • ข้อมูลที่นำมาศึกษา: มีขนาดเล็ก จำกัดเพียงแค่ข่าวสี่หัวข้อเรื่อง COVID-19 เท่านั้น ซึ่งแต่ละหัวข้อ สามารถเก็บข้อมูลโซเชียลมีเดียที่เจ้าของเนื้อหาเปิดเผยเป็นสาธารณะเท่านั้น และไม่รวมเนื้อหาใน LINE ซึ่งไม่สามารถเข้าถึงได้เลยหากไม่ใช่เจ้าของหรือสมาชิกในกลุ่ม ข้อจำกัดนี้ทำให้ผลการศึกษาอาจไม่เป็นจริงในทุกกรณี

ดังนั้น หากผู้สนใจต้องการที่จะต่อยอดพัฒนากระบวนวิธีนี้ให้ดียิ่งขึ้น ผู้เขียนแนะนำให้มุ่งเน้นการพัฒนาในเรื่องดังต่อไปนี้:

  • กระบวนวิธี: พัฒนาหรือออกแบบกระบวนวิธีที่จะสามารถยืนยันความสัมพันธ์เชิงเหตุและผล (Causation) เพื่อสนับสนุนระดับความสัมพันธ์ (Correlation) เช่น การหาวิธีเก็บและยืนยัน “การไหล” ของข้อมูลชิ้นหนึ่งๆ เป็นลำดับๆ และหาจุดที่ผู้รับข้อมูลชิ้นนั้นเปลี่ยนบทบาทจากผู้แพร่เป็นผู้แก้ไข
  • ข้อมูลที่นำมาศึกษา: เก็บข้อมูลข่าวลวงประเด็นอื่นๆ และหัวข้ออื่นๆ ให้มากขึ้น และยืนยันข้อสรุปโดยการยืนยันนัยยะทางสถิติ (Statistical significance) ของสมมุติฐานเมื่อเทียบกับจำนวนข้อมูลทั้งหมด

บทความนี้เป็นส่วนหนึ่งของโครงการ Cofact ประเทศไทย